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ABSTRACT

Security and Interdependency in a Public Cloud: A Game Theoretic Approach

Report Title

As cloud computing thrives, many organizations – both large and small – are joining a public cloud to take advantage 
of its multiple benefits. Especially public cloud based computing, is cost efficient, i.e., a cloud user can reduce 
spending on technology infrastructure and have easy access to their information without up-front or long-term 
commitment of resources. Despite those benefits, concern over cyber security is the main reason many large 
organizations with sensitive information such as the Department of Defense have been reluctant to join a public 
cloud. This is because different public cloud users share a common platform such as the hypervisor. An attacker can 
compromise a virtual machine (VM) to launch an attack on the hypervisor which, if compromised, can instantly yield 
the compromising of all the VMs running on top of that hypervisor. This work shows that there are multiple Nash 
equilibria of the public cloud security game. However, the players use a Nash equilibrium profile depending on the 
probability that the hypervisor is compromised given a successful attack on a user and the total expense required to 
invest in security. Finally, there is no Nash equilibrium in which all the users in a public cloud fully invest in 
security.
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Abstract— As cloud computing thrives, many organizations – 
both large and small – are joining a public cloud to take 
advantage of its multiple benefits. Especially public cloud 
based computing, is cost efficient, i.e., a cloud user can reduce 
spending on technology infrastructure and have easy access to 
their information without up-front or long-term commitment 
of resources. Despite those benefits, concern over cyber 
security is the main reason many large organizations with 
sensitive information such as the Department of Defense have 
been reluctant to join a public cloud. This is because different 
public cloud users share a common platform such as the 
hypervisor. An attacker can compromise a virtual machine 
(VM) to launch an attack on the hypervisor which, if 
compromised, can instantly yield the compromising of all the 
VMs running on top of that hypervisor. This work shows that 
there are multiple Nash equilibria of the public cloud security 
game. However, the players use a Nash equilibrium profile 
depending on the probability that the hypervisor is 
compromised given a successful attack on a user and the total 
expense required to invest in security. Finally, there is no Nash 
equilibrium in which all the users in a public cloud fully invest 
in security. 

Keywords- Cloud computing; cyber security; externalities; 

game theory; interdependency 

I.  INTRODUCTION 
With software being one of the fastest growing industries 

in the United States [1], when its security is overlooked the 
inattentiveness can be attributed to both the producer and 
consumer. This can have far reaching implications, from 
infrastructure protection to the home computer system. 
Internet security suffers too due to under-investment from 
both sides of the market, which can be counterintuitive since 
logic dictates that prevailing economic forces should drive 
the incentive to invest on both ends. This is not the case for 
several reasons, including perverse incentives, asymmetrical 
information, and interdependency (we will elaborate on the 
meanings of these terms from economics in the appropriate 
parts of our paper.) However, it will be seen that 
interdependency underpins all these causes and influences 
network security in general. The preliminary version of this 
paper was published in [27]. 

Due to the fast paced nature and rapid expansion of 
developments in the cyber realm, first mover advantages can 

be enormous. This can create a software maker philosophy in 
which “they’ll ship it on Tuesday and get it right by version 
3” [16]. This philosophy clearly can neglect many security 
aspects on the supply side. And the demand side, in turn, 
cannot truly know what it is purchasing, since many of the 
vulnerabilities could go undetected. This is especially true in 
large networks with limited security manpower. The idea of 
“get it out now and fix it later” is a perverse incentive that is 
created by the demand aspect of the Internet economy since 
the incentive is to have new and updated versions of software 
as fast as possible but the unintended is a product that is rife 
with bugs. However, because of information asymmetry, the 
consumer usually does not know the true nature of the 
product he is being delivered. This is because many times the 
producers do not know the true security of their own product 
[16]. This is especially true with emerging fields of 
computing such as cloud computing [15]. And it is indeed a 
sizable problem, as fears of leakage of sensitive or 
confidential data poses a “significant barrier to the adoption 
of cloud services” [17], which hinders major industry players 
from switching to cloud platform services, stifling its growth. 
The lack of product knowledge, product testing, and trust all 
establish an interdependent relationship between producer 
and consumer. For better or for worse, the feedback 
mechanism that governs economics is an interdependent 
relationship between two sides of trade. It allows a consumer 
to send signals to a producer so that maximum utility can be 
reached (i.e., Pareto efficiency). However, the examples of 
perverse incentives and information inequality (where this 
feedback mechanism has failed in unintended and undesired 
ways) are just a small part of the general connectedness of 
network security. In fact, network security is just another 
small part in the complex infrastructure system of any 
developed nation. And as we will see, interdependency is the 
underlying factor in this large network of infrastructures 
critical to the operations of a country. 

The cloud now figures largely in the information 
infrastructure. It is critical because of its rapidly expanding 
size and scope. This is especially problematic for the 
aforementioned problem of technology outpacing security.  
This spurs cloud providers to furnish expertise in security 
over what individual organizations (hereby alternately 
referred to as users) would do on their own. This encourages 
more users to join the cloud; however, the cloud then 
becomes an attractive target because of the potentially large 
payoff of a cyber attack. What is more notable than the 
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regular security issues any network would have is that public 
clouds exhibit a unique type of interdependency because of 
the ability of an attacker to propagate his attack through the 
hypervisor to all VMs using the hypervisor. This eliminates a 
very important aspect of regular network security in which 
an attacker would have to go through a multi-hop process in 
order to launch an indirect attack. Thus, a public cloud at its 
current stage leaves its users more susceptible to a ‘bad 
neighbor’ effect where an unsecured user might allow 
another to be indirectly attacked. Although our focus is on 
public clouds, the same research problems may also exist in 
private clouds, and our solution is also applicable. We focus 
on public clouds only because the problems are more 
pronounced in public clouds. 

In a dense network of VMs, an attacker may launch an 
indirect attack on a User j by first compromising the VMs of 
User i and then attacking User j as a prime target. This 
creates a risk connection between the users of a cloud where 
a ‘large’ player (one who has a high potential loss) may not 
be willing to use cloud services due to the risk imposed by a 
‘small’ player (low potential loss from a successful 
compromise). This threat is worsened when a small player 
will not invest in security measures since it could (correctly) 
rationalize that an attacker will attack the larger user anyway, 
so investing would be pointless. Definitely, a single user of a 
public cloud cannot protect itself if other users are not doing 
the same. This means that a user will be protected if it 
defends itself while other users are also securing their asset. 
When there are two or more rational entities that face 
interdependent choices, we can use game theory to model 
their behaviors, as it is indeed "the study of mathematical 
models of conflict and cooperation between intelligent 
rational decision-makers” [5]. 

There are several main contributions this paper makes. 
Primarily, it aims to model these behaviors that govern the 
actions of different users in the cloud using game theoretical 
concepts. Along with modeling the choices of cloud users, it 
will be shown that the low profile user imposes a negative 
externality, or a cost imposed unwittingly upon an otherwise 
uninvolved party—most notably the larger user. This will, in 
turn, spur the large player to invest more often than the small 
player since the large player is usually the prime target. The 
outcome: there is no Nash equilibrium in which all the 
players will fully invest in security. Lastly, we will prove 
that the probability that the hypervisor of a cloud is 
compromised given a successful attack on a VM will 
determine if we have a pure or mixed strategy Nash 
equilibrium.  

After the related work in Section II, Section III will 
explain the cloud architecture common to the public cloud 
model that is incorporated into our game model. Section IV 
will explain and set up the problem in the context of game 
theory and diagram the problem in a normal form game. 
Section V looks at the results provided by the game and 
maps out the different types of equilibrium reached given 
different parameters.  Further, Section V describes and 
shows the equilibria changes in accordance with changes to 
the game parameters.  Section VI shows the numerical 
results that graphically demonstrates how the equilibrium 

changes following a change in the parameters. Section VII 
extends the model beyond one attacker and two users so as to 
pave the way for possible future research in the topic. 
Section VIII concludes the paper. 

II. BACKGROUND AND RELATED WORK 
We divide the related work in five subsections. In 

Subsection A we will look at the interdependent nature of the 
critical infrastructure network in the United States and its 
connection to cyberspace. In Subsection B we will relate 
game theory and its connection to interdependency. In 
Subsection C we will bring together game theory and 
network security with no intermediary. With Subsection D 
game theory is applied to cloud computing. Subsection E 
deals with interdependency and cross-side channel attacks 
between VMs. 

A. Critical Infrastructure Defense (and lack thereof) 
Generally, the United States government does not 

interfere in the affairs or operations of the Internet unless it 
pertains to national security. However, even when national 
security is at stake, the government is ill-prepared for a 
response, as Dave Clemente argues in his paper [2]. The 
main problem, he reasoned in his thesis, is that the 
infrastructures critical to the operations of the United States 
are mislabeled and overstated due to miscommunication at 
the local and national governmental levels. This causes many 
infrastructures that are not critical to be labeled critical (This 
is nicely stated in his aphorism: “When everything is critical, 
nothing is”). The problem is compounded by tying all these 
infrastructures together through a dense network of 
interconnectedness, making one network of infrastructure 
dependent on another. The backbone of this connected 
network is the Internet, which is becoming increasingly 
relied upon and only furthering the deep ties these sub-
networks already have. Unfortunately, Clemente argues, the 
Internet securitization process is not keeping pace with the 
current expansion of the Internet due to industry pressures to 
sacrifice long term security needs for short and mid-term 
speed and efficiency needs. And until the critical 
infrastructure is taken out of private interests (which would 
cause much more harm than good), this problem will persist. 
And although no major solution was mentioned by 
Clemente—other than something must be done— a much 
more comprehensive solution was laid out by Kenneth 
Cukier [3]. 

The work done by Cukier and his colleagues addressed 
many of the issues raised by Clemente.  The main issue was 
that there is an underinvestment of security within the critical 
information infrastructure of the United States. This problem 
was discussed at length and was cast as a symptom, not the 
disease. The underinvestment was due to many underlying 
factors such as informational asymmetry (companies do not 
know the extent of their problem), conflict of interest 
(government interests vs. private), and interdependent 
security (this will be further analyzed in the context of game 
theory later). All these problems aggregate into a general 
deficiency of investment in cyber security. Although this 
seems like an economically counterintuitive outcome, it is a 
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rational one given the constraints of various aforementioned 
forces. The solution offered by Cukier was essentially an 
insurance market for security risk, facilitated by a favorable 
environment created by the government. 

Cukier goes on to state that many private companies do 
not know the extent of their risk because of a reluctance to 
share their vulnerabilities with others. Insurance companies 
will not insure the risk since they do not have access to the 
information to quantify it. This creates a cat-and-mouse 
game where neither the insurance market nor the companies 
in need of security will make the first move. This, according 
to Cukier, is where the government can step in and facilitate 
transactions of sensitive information as well as preserve 
anonymity. The creation of a beneficial environment through 
incentives and information exchange can create a market for 
risk, which by definition will reduce risk of infrastructure 
sectors (insurance premiums will discourage risky business 
and encourage security investing). The dissertation of Forrest 
Hare [4] reflects these sentiments as he argues that there is 
an underinvestment due to a conflict of interests.  He 
contends that a public-private partnership should be formed 
to facilitate the transfer of information and to increase the 
incentives of private firms to invest in security. This will 
lead to noticeable positive externalities on the public (since 
they will be more secure) and everyone will be better off as a 
result. 

Actually, under the new Executive Order 13636—
Improving Critical Infrastructure Cyber security [25], the 
White House would like to provide incentive to private 
companies to voluntarily adopt a Cyber Security Framework. 
The Framework is a partnership with the owners and 
operators of critical infrastructure to improve cyber security 
information sharing and collaboratively develop and 
implement risk-based standards. The Framework’s goal is to 
share cyber security information such that the United States 
government and the private sector may better protect and 
defend themselves against cyber threats and reduce cyber 
risk to critical infrastructure. In fact, a security breach on a 
government contractor (i.e. a private company) can 
compromise multiple government programs. This shows the 
interdependency between government and private sector 
security. The White House’s Cyber Security Framework is 
currently under development at the National Institute of 
Standards and Technology. The Cyber Security Framework 
includes a set of standards and technological approaches to 
be adopted by each organization to minimize cyber risks. 

B. Game Theory and Interdependency 
Through globalization, firms are becoming increasingly 

dependent upon each other.  Thus, it would be logical to 
assume that their choices would reflect the actions of their 
competitors and benefactors sharing a given set of 
information. Game theory accurately describes these 
conditions, as it is poised “the study of mathematical models 
of conflict and cooperation between intelligent rational 
decision-makers” [5]. This makes the case for 
interdependency among firms, as the actions of one affects 
the actions of many. The examples of interdependency 

observed here will include airline security, bankruptcy, and 
vaccinations. 

Two of the papers from the National Bureau for 
Economic Research (NBER) carefully looked at multiple 
scenarios involving game theory and the subsequent 
interdependency of the players [6-7]. The first paper looked 
at discrete and mostly static games [6]. It was shown that 
with airline security, one’s own investment in baggage 
security was heavily dependent on the choices of the other 
airline in a simple two player game. Here one’s own security 
is compromised due to another airline’s lack of security or 
complemented by the reinforcement of the rival’s airline 
security. It was shown that the two Nash equilibria that exist 
in a simple two firm game occur when both airlines invest in 
security and when both airlines do not invest in security. As 
stated in the previous subsection, clearly only the outcome of 
both investing is desirable. However, economic costs and 
initial conditions can influence the firms to go the other way 
and to not investing. With government regulation or other 
methods to tip incentives toward investing, an economically-
optimal situation can be achieved with a little tweaking. 
Similar results were found with more than two firms since 
the investing of one firm can cause multiple firms to change 
their decision to invest, creating a cascade effect in which 
one firm causes another to invest and so on. Within the same 
paper [6], similar results were derived from firm bankruptcy. 
If each division of a large firm, such as bank, were to 
undergo risk reduction individually, the collective risk of a 
firm would be reduced. However, if one branch takes 
exceptional risks, it can create bankruptcy for the whole firm 
such that the other divisions succumb by the cascading 
effect. 

The second of the NBER papers demonstrated the 
cascading effect [7].  Again, the airline security problem was 
studied but in much more depth and mathematical rigor. 
They proved that the incentive to invest is heavily dependent 
on the cost of investing compared to the benefit derived from 
both investing in security. The cost could be manipulated 
both by lowering the cost of investing as well as raising the 
cost of not investing. 

Unlike an organization having exclusive use of 
computational resources, the resource sharing that occurs in 
the cloud enables unforeseen exploitation of weaknesses by 
attackers. Similarly, the commonality of computational 
resources without an equal commonality of user-instantiated 
security creates an avenue for launching an attack on other 
tenants i.e., a negative externality due to interdependency 
and resource sharing. 

The link between interdependency and game theory has 
been clearly established along with the connection between 
network security and interdependency in the previous two 
subsections. In the next section we will show the application 
of game theoretical concepts to network security. 

C. Applying Game Theory to Cyber Security 
Sun et al., presented a model of investment security [8] 

where they simulated a security game between two arbitrary 
companies having to decide whether to invest or not invest in 
information security. The payoffs were based on several 
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inputs such as cost of investing and the possible loss from a 
security compromise. However, the most important 
parameter discussed was a penalty parameter p for not 
investing. It was shown that the 3 Nash equilibrium 
strategies produced from the game were two pure Nash 
equilibria (neutral payoff for not investing and a positive 
payoff each for investing) and one mixed strategy that was a 
function of all the parameters. The pure strategies were 
shown to have an Evolutionary Stable Strategy (ESS) while 
the mixed strategy was not. The mixed strategy was 
demonstrated to be a focal point, as a strategy on either side 
of this critical point 'tipped' or 'cascaded' to the closer ESS at 
pure Nash equilibrium. However, p was shown to factor in 
where the mixed strategy fell between the two pure strategies 
on the probability spectrum of 0 to 1. This could skew the 
results from what could be considered 'normal' and 
demonstrated that an outside force such as the government 
could manipulate the penalty parameter in order to achieve a 
more favorable outcome. 

Even though the previous example would have used a 
central manager or network administrator to decide if 
investing was the correct choice, Kamhoua et al. applied 
game theory to nodes in autonomous networks [9]. They 
used similar constraints with similar results: there are 3 Nash 
equilibria, two pure and one mixed with the mixed strategy 
being an unstable equilibrium. This resulted in a cascading of 
strategies of either side to that tended toward the two pure 
Nash equilibria. The main difference, however, is instead of 
a penalty parameter, as in the paper of Sun et al [8], there is a 
trust parameter which the initial conditions of the strategy 
heavily depended on. The trust parameter depended on how 
much the deciding node believes that other node will 
participate in a security mechanism. The main conclusion to 
draw from these simulations is that it is impossible to move 
from the low trust equilibrium to the high trust equilibrium 
through an evolutionary process. In the replicator dynamic 
model [26], the final state depends entirely on the initial 
condition. This has broad reaching implications, from 
network security to cloud computing.  

In Tamer Basar's and Tansu Alpcan's book [10], they 
explain the devastating costs of failure to properly protect a 
network. They show how an attacker can infiltrate a network 
at one node, but spread to other nodes (or infrastructures) 
due to contagion. This can cause a spillover effect where one 
node affects another and so on. The end result is that network 
interdependency is created and that one unprotected node 
causes risks at all the other nodes, so the decision of one 
affects the outcomes of many. Basar and Tansu however 
only applied network security in a traditional computer 
setting. The rise and expansion of cloud computing has led to 
many questions about its security. To raise concerns further, 
cloud computing’s annual growth is rapidly outpacing 
regular computing methods by a significant margin [11]. In 
the next subsection we will outline details on its expansion, 
tradeoffs in switching to cloud platforms, and further 
research in cloud security. 

D. Interdependency Analysis in Cloud Computing 
According to the National Institute of Standards and 

Technology definition of cloud computing, some of the 
‘essential characteristics’ that come with the term include 
resource pooling, elasticity, resource optimization, network 
access and on-demand self-service [12]. Though this can 
overcome many constraints posed by traditional computing, 
the emerging field of cloud computing currently carries some 
profound tradeoffs. Pearson and Benameur outlined several 
important drawbacks in cloud technology such as privacy, 
security, and trust concerns [13]. However, these three 
problems are not unrelated to each other. Security within the 
cloud is based on trust of the provider, and privacy is based 
on the relevant security issues. Trust is in turn built on the 
relationship of security and privacy that the cloud operator 
provides. This is not the case every time, since not all cloud 
technology has these aforementioned problems due to their 
diverse nature. Zissis et al. [14] differentiate between public 
and private cloud structures by stating that private cloud 
technology is for inter-organizational operations and no third 
party is required while public and community cloud 
computing utilizes a third party for a variety of service 
platforms. Such service platforms that cloud computing 
provide include Infrastructure as a Service (IaaS), Software 
as a Service (SaaS), and Platform as a Service (PaaS).  

An IaaS cloud provides a user access to virtualized 
hardware, presented by a hypervisor (e.g., VMware, Xen, 
KVM) and encapsulated in a VM, where the user is able to 
deploy and run arbitrary software including operating 
systems and applications on the underlying shared hardware. 
A PaaS cloud provides a user a language-specific platform 
(e.g., JVM, .Net) to deploy and run arbitrary applications 
developed using the given language on the underlying shared 
platform. A SaaS cloud provides a user access to a particular 
application (e.g., web-based email, document editor) where 
the user can use the functionality provided by the underlying 
shared application. Although these different levels of cloud 
services can be built separately, it is increasingly common to 
build a high-level cloud service using resources provided by 
a lower-level one (e.g., build a SaaS on resources from PaaS 
and a PaaS on resources from IaaS), so that the former can 
benefit from the elasticity and economics provided by the 
latter. Therefore, although our paper focuses on VM-based 
hosting of mission-critical applications in an IaaS setting, its 
outcomes can also generate an impact to other models of 
cloud computing (further information can be seen in [14]). 
Although private clouds do share some of the benefits and 
drawbacks of public clouds, the issues of privacy, security, 
and trust arise from mainly public cloud platforms, as many 
of the users’ computing capabilities are outsourced to a third 
party owner who leases the technology in a variety of ways. 
Therefore we focus on the public cloud; so in this paper 
private cloud entities will not be discussed further. In fact, 
private clouds allow users from the same organization to run 
their internal applications on shared resources. Therefore, in 
a game theoretic sense, there should be less conflict of 
interest among private cloud users since they belong to the 
same organization. 
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As stated before, these problems that involve the public 
cloud are not unrelated as they all underpin a unique 
relationship between the third party provider and the cloud 
user. This can give rise to interdependency between the user 
and the operator of the cloud.  If we apply the behavior of 
network nodes as described in [9] to a cloud’s VMs, then we 
can see that cloud computing yields very interdependent 
structure.  Cloud computing gives way to two types of 
interdependent relationships: cloud host-to-client and cloud 
client-to-client.  

Client-to-client interdependency is much less studied 
than to the above-mentioned cloud host-to-client 
relationship. Although, it can still carry the negative 
externalities provided by the first relationship since a 
security compromise is the same no matter where it has 
originated. A simple example of this involves the airline 
security problem found in [6] and [7] where a bomb infused 
baggage is sent through an unsecured airline, which in turn 
reaches a heavily secure airline because no inter-airline 
security screening is used (and it usually is not). Thus, an 
under-secure airline can impose negative externalities onto a 
seemingly secure airline. Similarities can be drawn to two 
clients operating in the same cloud environment. An attacker 
can compromise an unsecured client and make its way to the 
more secure and larger client through the hypervisor. 
However, unlike the airline interdependent security problem 
where a bomb can only destroy one airline, a virus in a 
public cloud or computer network can compromise many 
VMs including the VM in which the attack originated. 

We have already seen that interdependency lays the 
foundation for game theory in previous subsections. Indeed, 
this scenario between two clients also involves two or more 
intelligent rational entities with conflicting incentives. 
Analogous to the previous example, a small firm with high 
overhead will see little point to invest in security since its 
cost to invest is most likely diminished by the fact it has 
lower possible loss from being compromised. However, a 
larger firm has a much higher potential loss from being 
compromised, especially if they carry sensitive information 
(This has been seen in [15] when large firms refuse to use 
cloud computing because of its risks). Thus, a rational 
attacker might attack a smaller firm, compromise the 
hypervisor, and then target the larger firm if the potential 
gain from a successful indirect attack outweighed the 
potential gain from a direct attack. 

E. Interdependency and Cross-side Channel Attacks 
between VMs 
The support for security isolations from existing cloud 

systems is limited. The different VMs sharing the same 
resources may belong to competing organizations as well as 
unknown attackers. From the perspective of a cloud user, 
there is no guarantee whether the underlying hypervisor or 
the co-resident VMs are trustworthy. The shared resource 
makes privacy and perfect isolation implausible. There is a 
risk that a covert side channel be used to extract another 
user’s secret information or launch a Denial of Service (DoS) 
attack. Cross-side channel attacks between VMs are possible 
in a public cloud when the VMs share the same hypervisor, 

CPU, memory, and storage and network devices. Some of 
the resources can be partitioned (e.g., CPU cycles, memory 
capacity, and I/O bandwidth). VMs also share resources that 
cannot be well partitioned such as last-level cache (LLC), 
memory bandwidth, and IO buffers. The shared resources 
can be exploited by attackers to launch cross-side channel 
attack. Although a multi-tenant public cloud-computing 
environment provides various advantages, it also introduces 
new challenges and concerns, especially on security issues. 
For instance, the security problems on a shared cloud 
resource (e.g., cloud storage devices, network services, 
software components, etc.), which are originally rooted from 
one of the tenants via internal vulnerabilities or external 
cyber-attacks, may eventually affect the service quality and 
security of all the tenants in the same cloud-computing 
environment. Unfortunately, we cannot simply assume that 
there would be a single authority who could 
comprehensively maintain all the possible issues, not only 
technical but also non-technical, across the tenants.  

Moreover, existing cloud service providers do not 
provide sufficient security guarantees to their tenants. In fact, 
the service-level agreements (SLAs) of representative cloud 
providers (e.g., Amazon EC2/S3, Windows Azure, Google 
Compute Engine) specify only the provisions related to 
service up time, and there is no mentioning of security in 
these SLAs at all. 

Many researchers have investigated the cache based side 
channel. Ristenpart et al. [18] show that a malicious user can 
analyze the cache to detect a co-resident VM’s keystroke 
activities and map the internal cloud infrastructure and then 
launch a side-channel attack on a co-resident VM. Bates et 
al. [19] demonstrate the ability to initiate a covert channel of 
4 bits per second, and confirm co-residency with a target VM 
instance in less than 10 seconds. Li et al. [23] proposed 
several techniques to protect VMs from untrusted 
management VM, which includes modifying the hypervisor 
to restrict access of the privileged domain to the memory 
mappings of the VM, encrypting all of the memory pages 
and vCPU registers before they are accessed by the 
privileged domain, and providing a hash value of the kernel 
image to be compared with the one residing on the VM. 
HyperSentry [24] enables stealthy in-context measurement 
of hypervisor integrity using a hardware channel to trigger 
the measurement and, using the system management mode, 
to protect the measurement agent’s base code and critical 
data.  

Given the danger of a cross-side channel attacks, some 
users may require physically isolated resources from the 
cloud provider. Zhan et al. [20] introduce HomeAlone - a 
defensive tool that helps users determine if their VMs have 
an exclusive use of a physical machine. HomeAlone can 
detect the activity of an intruder’s co-resident VM by 
analyzing a portion of the L2 memory cache set aside by his 
VMs. The same technique can be used to detect adversarial 
VMs which try to extract information through the side 
channel due to their usual cache activity pattern. This 
solution, however, requires that all the user VMs to be co-
resident which is often difficult to achieve and makes them 
more vulnerable to hardware and hypervisor failures.  
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Approaches that dedicate a physical machine to a specific 
user also greatly limit some of the benefit of a public cloud 
such as the on-demand dynamic resource allocation. This 
means that a user can no longer purchase exactly the capacity 
they require when they require it. Therefore, we consider in 
this paper only schemes in which the VMs from different 
users share the same resources. We can see that a cross-side 
channel attack between VMs is closely related to the 
problem of interdependency when many users share the 
same resource that they depend on. This paper provides a 
comprehensive analysis of direct vs. indirect attack, 
collateral damage, and negative eternality in a public cloud. 

III. SYSTEM MODEL 
Figure 1 illustrates our system model: A public cloud 

with n users that we denote User 1, User 2 … User n. Each 
user runs several applications illustrated by Application 1 
…Application k in Fig. 1. Technically, the users may run a 
different number of applications without any impact on this 
model. The different applications require an operating 
system to function and that operating system, in turn, 
manages a VM in the cloud. In practice, a single user may 
use several operating systems or numerous VMs.  

However, we consider the architecture in Fig. 1 to 
simplify the exposition. As it is a common practice in a 
public cloud, we consider that the different VMs from the 
different users share the same hypervisor and hardware as in 
Fig. 1. The hypervisor can be of different types such as the 
Kernel-based Virtual Machine (KVM), Xen, and VMware. 
The common factor is that the VMs share the same platforms 
that expose each user to collateral damage. 

We consider the possibility of a random hardware failure 
to be a rare event and neglect that possibility in our analysis. 
It is well known that the users’ security heavily depends on 
the cloud provider. We are analyzing security 
interdependency among the users; therefore our model 
considers that the attacker compromises the hypervisor in 
two steps. The first step is to compromise a user’s VM, or 
masquerade as legitimate user to obtain a VM in the public 
cloud. The second step is to use the compromised VM to 
attack the hypervisor. This means that the public cloud 
provider takes all the necessary measures to prevent an 
attacker from directly compromising the hypervisor without 
using a compromised VM. This is to separate cloud client-to-
client interdependency and cloud host-to-client 
interdependency. However, any model that analyzes cloud 
host-to-client interdependency can be superposed to our 
model. We distinguish two types of attack depending on the 
extent of the consequence: a restricted attack and an 
unrestricted attack. A restricted attack on User i only 
compromises the applications, operating system and VM that 
belong to User i; the hypervisor is not affected after a 
restricted attack. An unrestricted attack has consequences 
that can cross a VM to reach the hypervisor, i.e. the 
hypervisor is compromised. We consider that all the users 
suffer the consequences (damage) if the hypervisor is 
compromised. This is because an attacker that compromises 
the hypervisor can then compromise all the VMs on that 
public cloud. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: System Model Illustration 

We can see that an unrestricted attack causes collateral 
damage. A direct attack on User i can go through that user’s 
VMs to compromise the hypervisor and ultimately affect the 
VM of another User j. We also refer to this as an indirect 
attack on j. Thus, each user in a public cloud can suffer from 
two types of attack. A direct attack on a User i is when an 
attacker primary target is User i. Furthermore, an indirect 
attack on User i happens when an attack that is launched on 
another User j compromises the hypervisor before 
compromising User i’s VM. 

This system model clearly shows that cyber security in a 
public cloud depends not only on a particular user but also 
on any other user of the cloud. This is the problem of 
interdependency. Section IV will analyze the 
interdependency problem from a game theoretic perspective. 

IV. GAME MODEL 
This section considers a game with three players: An 

attacker and two users (User i and User j). Section VII will 
extend this model to more than two users and multiple 
attackers. The three players are assumed to be rational, 
which means that each player has an understanding of the 
system and has the ability to perform the necessary 
calculation to only take the actions that maximize his 
expected payoff. The attacker has two strategies: launch an 
attack on User i (𝐴𝑖) and launch an attack on User j (𝐴𝑗). The 
attacker can only use one of the two strategies at a time. The 
attacker strategy to launch an attack on User i may consist of 
a multi-stage process involving steps such as scanning, 
collecting information, credential compromising, executing 
attack payload, establishing backdoor, cleaning footholds 
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and avoiding firewalls. Choosing to invest is a binary 
decision for each user in which the two users can either 
Invest (I) in security to maintain a minimum security 
standard and increase their protection or Not invest (N), i.e., 
there is no partial investment in security. The strategy Invest 
may consist of multiple actions such as system monitoring, 
reconfiguration, patching, updating software, and buying a 
new antivirus. Investment in security requires a total expense 
e. A strategy profile is a 3-tuple that indicates the action of 
each player. For instance, the strategy profile (𝑁, 𝐼, 𝐴𝑗 ) 
indicates that User i does not invest (N), User j invests (I), 
and the attacker launches an attack on User j (𝐴𝑗). 

The probability of a successful attack on a user, given 
that he has invested in security, is 𝑞𝐼 and the probability of a 
successful attack on a user, given that he has not invested, in 
security is 𝑞𝑁. We assume that 

0 ≤ 𝑞𝐼 < 𝑞𝑁 ≤ 1.          (1) 
We have 𝑞𝐼 < 𝑞𝑁  because any rational user will only 

invest in security measures that diminish his chance to get 
compromised.  

The probability that the hypervisor is compromised given 
a successful attack on a user is denoted  𝜋  . Our model 
considers that at least some successful attack on a VM will 
reach the hypervisor or that 𝜋 > 0. In fact 𝜋 = 0 means that 
a successful attack on a VM would never reach the 
hypervisor which would be a strong assumption. We also 
consider that not all the successful attacks on a VM can 
compromise the hypervisor ( 𝜋 < 1). Thus we have 

0 < 𝜋 < 1.          (2) 
We consider that there is a high profile User j and a low 

profile User i. In case of a security breach, the high profile 
user incurs more loss than the low profile user. The high 
profile User j’s expected loss from a security breach is 𝐿𝑗 and 
the expected loss from User i is 𝐿𝑖. Then we consider that 

0 < 𝐿𝑖 < 𝐿𝑗 .          (3) 
We will show that this imbalance affects the investment 

decision of each player and may yield positive and negative 
externalities. A positive (negative) externality is an action of 
a player that transfers a positive (negative) effect onto a third 
party. In fact, when (high profile) users in a public cloud 
invest in security to protect their applications, operating 
systems and VMs, they also protect the hypervisor which in 
turn protects other users from an indirect attack or cross-side 
channel attack. This yields a positive externality to other 
users in a public cloud. On the contrary, if a (low profile) 
user chooses not to invest in security, then an easy attack 

path to the hypervisor is created and thus exposes all other 
users of a public cloud to a cross-side channel attack. This 
yields a negative externality to other users in a public cloud.  

The accuracy of our model depends on the correct 
estimation of the probabilities 𝑞𝐼 , 𝑞𝑁 , 𝜋 and the loss 𝐿𝑖and 𝐿𝑗. 
We propose two different approaches to estimation. The first 
approach is the QuERIES approach [21]. The QuERIES 
approach estimates the probabilities and costs of successful 
attacks by first building an attack graph represented as a 
Partially Observable Markov Decision Process (POMDP). 
Then QuERIES uses a controlled red-team experiment and 
information market mechanisms to estimate the POMDP 
parameters. The outcome of an information market is a 
collective estimate of a quantity. The red-teams have real 
financial incentives for making correct predictions of the 
POMDP probabilities. Finally, the POMDP’s optimum 
policy is calculated to derive the different probabilities and 
cost.  

The second approach to estimate the relevant 
probabilities and cost associated with our model is based on 
historical data. In fact, In October 2011, the United States 
Securities and Exchange Commission (SEC) issued a new 
guidance [22] requiring that companies disclose cyber 
incidents including a description of the costs, other 
consequences, and the relevant insurance coverage. Those 
data can now be aggregated to estimate the relevant 
probabilities and cost associated with our model.  

In addition, each user has a reward R from using the 
cloud computing services. The reward R can be calculated as 
a function of a user’s multiple benefits of using the cloud 
such as: reduced spending on technology infrastructure; easy 
access to their information without up-front or long-term 
commitment of resources; and dynamically grow and shrink 
the resources provisioned to an application on demand.  

Finally, we consider that a User i can detect and identify 
a co-resident VM from User j in the cloud via side-channel 
analysis as in HomeAlone [20]. Further, a skillful attacker 
will first scan a public cloud to learn about the different users 
– gaining knowledge of their weaknesses and vulnerabilities 
before launching an attack. Also, each of the following can 
be made known or can be estimated about a player [21-22]: 
the expected loss from a security breach and the related 
probability; the total expense required to invest in security; 
and the reward from using the cloud. Therefore, our model 
assumes that the player’s identity, strategy and payoff are 
common knowledge among the players.  

TABLE I: GAME MODEL IN NORMAL FORM 

 Attack j 
User j 

I N 
 
 
 
User i 

 
I 

{ 𝑅 − 𝑒 − 𝑞𝐼𝜋𝐿𝑖; 
𝑅 − 𝑒 − 𝑞𝐼𝐿𝑗; 

𝑞𝐼𝜋𝐿𝑖 + 𝑞𝐼𝐿𝑗} 

{ 𝑅 − 𝑒 − 𝑞𝑁𝜋𝐿𝑖; 
𝑅 − 𝑞𝑁𝐿𝑗; 

𝑞𝑁𝜋𝐿𝑖 + 𝑞𝑁𝐿𝑗} 
 
N 

{ 𝑅 − 𝑞𝐼𝜋𝐿𝑖; 
𝑅 − 𝑒 − 𝑞𝐼𝐿𝑗; 

𝑞𝐼𝜋𝐿𝑖 + 𝑞𝐼𝐿𝑗} 

{ 𝑅 − 𝑞𝑁𝜋𝐿𝑖; 
𝑅 − 𝑞𝑁𝐿𝑗; 

𝑞𝑁𝜋𝐿𝑖 + 𝑞𝑁𝐿𝑗} 

  Attack i 
User j 

I N 
 
 
 
User i 

 
I 

{ 𝑅 − 𝑒 − 𝑞𝐼𝐿𝑖; 
𝑅 − 𝑒 − 𝑞𝐼𝜋𝐿𝑗; 
𝑞𝐼𝐿𝑖 + 𝑞𝐼𝜋𝐿𝑗} 

{ 𝑅 − 𝑒 − 𝑞𝐼𝐿𝑖; 
𝑅 − 𝑞𝐼𝜋𝐿𝑗; 

𝑞𝐼𝐿𝑖 + 𝑞𝐼𝜋𝐿𝑗} 
 
N 

{ 𝑅 − 𝑞𝑁𝐿𝑖 ; 
𝑅 − 𝑒 − 𝑞𝑁𝜋𝐿𝑗; 
𝑞𝑁𝐿𝑖 + 𝑞𝑁𝜋𝐿𝑗} 

{ 𝑅 − 𝑞𝑁𝐿𝑖 ; 
𝑅 − 𝑞𝑁𝜋𝐿𝑗; 

𝑞𝑁𝐿𝑖 + 𝑞𝑁𝜋𝐿𝑗} 
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Table I shows the game model in normal form. We can 
see that Table I is a combination of two tables (left and 
right). The left table shows the game model when the 
attacker targets User i. Therefore, User j can only be subject 
to collateral damage after a successful attack on User i and 
compromising of the hypervisor (which can happen with 
probability 𝑞𝐼𝜋 if User i invests or probability 𝑞𝑁𝜋 if User i 
does not invest). Similarly, the right table shows the game 
model when the attacker targets User j and User i can only be 
subject to collateral damage. The fourth line in each table 
shows when User i chooses to invest while the fifth line 
shows when User i chooses not to invest. In each table, the 
decision of User j is represented in the third (Invest) and 
fourth (Not invest) column. The payoffs in each block are 
represented in three lines. The first line is User i’s payoff. 
The second line is User j’s payoff. The attacker payoff is 
represented in the third line.  

The payoffs are calculated as follows: If the player 
chooses the strategy profile (I, I, 𝐴𝑖), both users invest (play 
I) while the attacker targets User i (𝐴𝑖) (left table, fourth line, 
third column). Then both users get the reward R. Both users 
incur expense e because both of them have invested in 
security. Since the attacker targets User i that will be 
compromised with probability 𝑞𝐼  (because User i has 
invested), it will incur a loss 𝐿𝑖  if compromised. This will 
result in an expected loss of 𝑞𝐼𝐿𝑖. User j is not targeted but 
can incur a loss 𝐿𝑗 if the attack on User i is successful (which 
happens with probability  𝑞𝐼 ) and the hypervisor is 
compromised (which happens with probability π). This is an 
expected loss of  𝑞𝐼𝜋𝐿𝑗  and can also be called collateral 
damage or loss from an indirect attack. The attacker’s payoff 
is the sum of the expected loss of all the users𝑈𝑎(𝐼, 𝐼, 𝐴𝑖) =
𝑞𝐼𝐿𝑖 + 𝑞𝐼𝜋𝐿𝑗. The attacker’s partial payoff  𝑞𝐼𝐿𝑖 comes from 
a direct attack on User i while the second part of his payoff 
𝑞𝐼𝜋𝐿𝑗 is the result of an indirect attack on User j through the 
hypervisor. 

However, in the strategy profile (N, I, 𝐴𝑖), User i has not 
invested (N), User j has invested (I) and the attacker targets 
User i (𝐴𝑖) (left table, fifth line, third column). The User i 
does not incur any expense e because the user has not 
invested in security. However, his likelihood of being 
compromised increases to 𝑞𝑁. Moreover, although User j has 
invested in security, his potential losses from collateral 
damage increase to 𝑞𝑁𝜋𝐿𝑗. The difference 𝑞𝐼𝜋𝐿𝑗 − 𝑞𝑁𝜋𝐿𝑗 =
(𝑞𝐼 − 𝑞𝑁)𝜋𝐿𝑗 is a negative externality that User i imposes on 
User j by not investing while User i is the prime target of the 
attacker. The attacker’s payoff is  𝑈𝑎(𝑁, 𝐼, 𝐴𝑖) = 𝑞𝑁𝐿𝑖 +
𝑞𝑁𝜋𝐿𝑗 > 𝑞𝐼𝐿𝑖 + 𝑞𝐼𝜋𝐿𝑗 = 𝑈𝑎(𝐼, 𝐼, 𝐴𝑖) . The inequality holds 
because of (1). The players’ payoffs in the other six strategy 
profiles are calculated in a similar way.  

V. GAME ANALYSIS 
The main goal of this analysis is to derive the different 

Nash equilibria of the game in Table I and understand their 
consequence for both users. At a Nash equilibrium profile, 
no player’s payoff can be increased by a unilateral deviation. 
Also, each player is playing his best response to other 
players’ best strategies. Therefore, the Nash equilibrium can 

help predict the behavior of any rational player (i.e., that 
want to maximize their payoff in a game).  

We observe that a user that is the prime target must be 
hurt before the other user suffers any collateral damage. 
Recall that the prime target’s VM must be compromised 
before the hypervisor is compromised. Thus, we consider in 
the remainder of this analysis that each user prefers to invest 
instead of not investing when he believes that he is the 
attacker’s prime target. For User i this translates to 

𝑅 − 𝑒 − 𝑞𝐼𝐿𝑖 ≥ 𝑅 − 𝑞𝑁𝐿𝑖 ⇒ 
𝑒 ≤ (𝑞𝑁 − 𝑞𝐼)𝐿𝑖           (4) 

Similarly, for User j this translates to 
𝑅 − 𝑒 − 𝑞𝐼𝐿𝑗 ≥ 𝑅 − 𝑞𝑁𝐿𝑗 ⇒ 

𝑒 ≤ (𝑞𝑁 − 𝑞𝐼)𝐿𝑗           (5) 
Also observe that investing in security is the best option 

to either User i or User j if and only if the user believes that 
he will be the attacker’s prime target. Also, the attacker 
targets only the player that gets him the higher total payoff 
(consisting of a direct and indirect payoff).   

Theorem 1:  
If 𝜋 ≤ 𝜋0 =

𝑞𝐼𝐿𝑗−𝑞𝑁𝐿𝑖

𝑞𝑁𝐿𝑗−𝑞𝐼𝐿𝑖
, then the game in Table I admits a 

pure strategy Nash equilibrium profile (𝑁, 𝐼, 𝐴𝑗). 
If 𝜋 > 𝜋0, there are three possible mixed strategy Nash 

equilibria depending on the required expense for security e. 
Proof: 
We start to analyze the eight different pure strategy 

profiles to see if one can be a Nash equilibrium. 
Case 1: Both users invest, 

𝑈𝑎(𝐼, 𝐼, 𝐴𝑗) − 𝑈𝑎(𝐼, 𝐼, 𝐴𝑖) = 
(𝑞𝐼𝜋𝐿𝑖 + 𝑞𝐼𝐿𝑗) − (𝑞𝐼𝐿𝑖 + 𝑞𝐼𝜋𝐿𝑗) = 𝑞𝐼(1 − 𝜋)(𝐿𝑗 − 𝐿𝑖). 

Then by considering (2) and (3) we have  
𝑈𝑎(𝐼, 𝐼, 𝐴𝑗) − 𝑈𝑎(𝐼, 𝐼, 𝐴𝑖) = 𝑞𝐼(1 − 𝜋)(𝐿𝑗 − 𝐿𝑖) > 0.       (6) 

Therefore, the attacker gets a higher payoff by targeting 
User j when both users invest. Thus the strategy profile 
(𝐼, 𝐼, 𝐴𝑖)  can never be a Nash equilibrium because the 
attacker can increase his payoff by changing his strategy 
to 𝐴𝑗. This gets us to the strategy profile (𝐼, 𝐼, 𝐴𝑗) that cannot 
also be a Nash equilibrium because User i (not being the 
attacker’s prime target) can increase his payoff by changing 
his strategy from I to N. This yields the strategy 
profile (𝑁, 𝐼, 𝐴𝑗) that we study in Case 4 below.  

Case 2: Both users do not invest, 
𝑈𝑎(𝑁, 𝑁, 𝐴𝑗) − 𝑈𝑎(𝑁, 𝑁, 𝐴𝑖) = 

(𝑞𝑁𝜋𝐿𝑖 + 𝑞𝑁𝐿𝑗) − (𝑞𝑁𝐿𝑖 + 𝑞𝑁𝜋𝐿𝑗) = 𝑞𝑁(1 − 𝜋)(𝐿𝑗 − 𝐿𝑖). 
Then by considering (2) and (3) we have  

𝑈𝑎(𝑁, 𝑁, 𝐴𝑗) − 𝑈𝑎(𝑁, 𝑁, 𝐴𝑖) 
= 𝑞𝑁(1 − 𝜋)(𝐿𝑗 − 𝐿𝑖) > 0.          (7) 

Thus, the attacker gets a higher payoff by targeting User 
j. The strategy profile (𝑁, 𝑁, 𝐴𝑖) cannot be Nash equilibrium 
because the attacker can increase his payoff by changing his 
strategy to 𝐴𝑗. This gets us to the strategy profile (𝑁, 𝑁, 𝐴𝑗) 
that cannot also be a Nash equilibrium because User j being 
the attacker’s prime target can increase his payoff by 
changing his strategy from N to I (because of  (5)). This 
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yields again the strategy profile (𝑁, 𝐼, 𝐴𝑗) that we study in 
Case 4 below. 

Case 3: User i invests while User j does not.  
We can see from Table I that  

𝑈𝑎(𝐼, 𝑁, 𝐴𝑖) = 𝑈𝑎(𝐼, 𝐼, 𝐴𝑖) = 𝑞𝐼𝐿𝑖 + 𝑞𝐼𝜋𝐿𝑗 .          (8) 
Moreover, 

𝑈𝑎(𝐼, 𝑁, 𝐴𝑗) − 𝑈𝑎(𝐼, 𝐼, 𝐴𝑗)

= (𝑞𝑁𝜋𝐿𝑖 + 𝑞𝑁𝐿𝑗) − (𝑞𝐼𝜋𝐿𝑖 + 𝑞𝐼𝐿𝑗) ⇒ 
𝑈𝑎(𝐼, 𝑁, 𝐴𝑗) − 𝑈𝑎(𝐼, 𝐼, 𝐴𝑗) = 𝑞𝑁(𝐿𝑗 + 𝜋𝐿𝑖) − 𝑞𝐼(𝐿𝑗 + 𝜋𝐿𝑖) 

= (𝑞𝑁 − 𝑞𝐼)(𝐿𝑗 + 𝜋𝐿𝑖) > 0.         (9) 
Note that the last inequality in (9) holds because of (1). 
Combining (8) and (9) we have 

𝑈𝑎(𝐼, 𝑁, 𝐴𝑖) = 𝑈𝑎(𝐼, 𝐼, 𝐴𝑖)  
and 

𝑈𝑎(𝐼, 𝑁, 𝐴𝑗) > 𝑈𝑎(𝐼, 𝐼, 𝐴𝑗) ⇒ 
𝑈𝑎(𝐼, 𝑁, 𝐴𝑗) − 𝑈𝑎(𝐼, 𝑁, 𝐴𝑖) > 𝑈𝑎(𝐼, 𝐼, 𝐴𝑗) − 𝑈𝑎(𝐼, 𝐼, 𝐴𝑖) 
Taking (6) into consideration we have 

𝑈𝑎(𝐼, 𝑁, 𝐴𝑗) − 𝑈𝑎(𝐼, 𝑁, 𝐴𝑖) > 0.          (10) 
From (10), the attacker gets a higher payoff by targeting 

User j. Thus the strategy profile (𝐼, 𝑁, 𝐴𝑖) cannot be Nash 
equilibrium because the attacker can increase his payoff by 
changing his strategy to  𝐴𝑗 . This gets us to the strategy 
profile (𝐼, 𝑁, 𝐴𝑗)  that also cannot be a Nash equilibrium 
because User j (being the attacker’s prime target) can 
increase his payoff by changing his strategy from N to I 
(because of (5)). We come back to the strategy profile 
(𝐼, 𝐼, 𝐴𝑗) that we study in Case 1 above, which finally yields 
Case 4 below. 

Case 4: User j invests while User i does not. 
𝑈𝑎(𝑁, 𝐼, 𝐴𝑗) − 𝑈𝑎(𝑁, 𝐼, 𝐴𝑖)

= (𝑞𝐼𝜋𝐿𝑖 + 𝑞𝐼𝐿𝑗) − (𝑞𝑁𝐿𝑖 + 𝑞𝑁𝜋𝐿𝑗) 
= (𝑞𝐼𝐿𝑖 − 𝑞𝑁𝐿𝑗)𝜋 + (𝑞𝐼𝐿𝑗 − 𝑞𝑁𝐿𝑖) = 𝑓(𝜋) 

We can see that 𝑓(𝜋)  is a linear function with slope 
(𝑞𝐼𝐿𝑖 − 𝑞𝑁𝐿𝑗) and initial value (𝑞𝐼𝐿𝑗 − 𝑞𝑁𝐿𝑖). From (1) and 
(3) we have the slope  𝑞𝐼𝐿𝑖 − 𝑞𝑁𝐿𝑗 < 0 . Thus, 𝑓(𝜋)  is 
decreasing. Moreover, there is a unique value of 𝜋 such that 

𝑓(𝜋) = 0 ⇒ 𝜋 = 𝜋0 =
𝑞𝐼𝐿𝑗 − 𝑞𝑁𝐿𝑖

𝑞𝑁𝐿𝑗 − 𝑞𝐼𝐿𝑖

,          (11) 

Furthermore, we have 𝑓(𝜋) > 0 for 𝜋 < 𝜋0 and 𝑓(𝜋) <
0 for 𝜋 > 𝜋0. Also, 
𝑓(1) = (𝑞𝐼𝐿𝑖 − 𝑞𝑁𝐿𝑗) + (𝑞𝐼𝐿𝑗 − 𝑞𝑁𝐿𝑖) 

= (𝑞𝐼 − 𝑞𝑁)(𝐿𝑖 + 𝐿𝑗) < 0.          (12) 
The last inequality holds because of (1).  
In addition, the initial value is 

𝑓(0) = 𝑞𝐼𝐿𝑗 − 𝑞𝑁𝐿𝑖 ,          (13) 
which can be either negative or positive. Observe that 

because of (2) the condition 𝜋 ≤ 𝜋0 can hold if 0 < 𝜋0 < 1, 
and by the Intermediate Value Theorem, and based on (12) 
and (13), it is only possible when  𝑓(0) > 0 ⇒ 𝑞𝑁𝐿𝑖 <
𝑞𝐼𝐿𝑗 ⇒ 

𝐿𝑖 <
𝑞𝐼

𝑞𝑁

𝐿𝑗 .          (14) 

Then we can distinguish two subcases (4a) and (4b).  

Subcase (4a): If  𝜋 ≤ 𝜋0 , then we have  𝑈𝑎(𝑁, 𝐼, 𝐴𝑗) −
𝑈𝑎(𝑁, 𝐼, 𝐴𝑖) ≥ 0. Thus the attacker prefers to attack User j 
than to attack User i. User j prefers to invest than not to 
invest (see (5)). User i not being the attacker’s prime target 
prefers not to invest. Then the strategy profile (𝑁, 𝐼, 𝐴𝑗) is 
the pure strategy Nash equilibrium of the game because no 
player can increase his payoff by a unilateral deviation.  

Subcase (4b): If 𝜋0 < 𝜋 (regardless of the sign of 𝑓(0)) 
we have 𝑓(𝜋) < 0 and then 𝑈𝑎(𝑁, 𝐼, 𝐴𝑗) − 𝑈𝑎(𝑁, 𝐼, 𝐴𝑖) < 0. 
The attacker prefers to attack User i than to attack User j. 
Thus the strategy profile (𝑁, 𝐼, 𝐴𝑗)  cannot be Nash 
equilibrium because the attacker can increase his payoff by 
changing his strategy to  𝐴𝑖 . This gets us to the strategy 
profile (𝑁, 𝐼, 𝐴𝑖)  that also cannot be a Nash equilibrium 
because User i being the attacker’s prime target can increase 
his payoff by changing his strategy from N to I (see (4)). 
This brings us to the Case 1 above which you recall brings us 
to Case 4. Therefore, this circular reasoning tells us that there 
is no pure strategy Nash equilibrium. However, there will be 
a mixed strategy Nash equilibrium that we analyze next. 

Mixed Strategy Nash Equilibrium: 
To find the mixed strategy Nash equilibrium, we set three 

variables 𝛼, 𝛽, 𝜆 with 
0 ≤ 𝛼, 𝛽, 𝜆 ≤ 1.          (15) 

𝛼 represents the probability by which the User i plays I. 
Since User i has only two strategies, User i plays N with 
probability 1 − 𝛼. Similarly, User j plays I with probability 
𝛽 and plays N with probability 1 − 𝛽. Likewise the attacker 
attacks j with probability 𝜆 and attacks i with probability 1 −
𝜆. 

By definition, User i plays a mixed strategy if and only if 
his payoff 𝑈𝑖(𝐼) when playing I is equal to his payoff 𝑈𝑖(𝑁) 
when Playing N. This translates to: 

𝑈𝑖(𝐼) = 𝑈𝑖(𝑁) ⇒ (1 − 𝜆)𝛽(𝑅 − 𝑒 − 𝑞𝐼𝐿𝑖)
+ (1 − 𝜆)(1 − 𝛽)(𝑅 − 𝑒 − 𝑞𝐼𝐿𝑖) 

+𝜆𝛽(𝑅 − 𝑒 − 𝑞𝐼𝜋𝐿𝑖) + 𝜆(1 − 𝛽)(𝑅 − 𝑒 − 𝑞𝑁𝜋𝐿𝑖) = 
(1 − 𝜆)𝛽(𝑅 − 𝑞𝑁𝐿𝑖) + (1 − 𝜆)(1 − 𝛽)(𝑅 − 𝑞𝑁𝐿𝑖) 

+𝜆𝛽(𝑅 − 𝑞𝐼𝜋𝐿𝑖) + 𝜆(1 − 𝛽)(𝑅 − 𝑞𝑁𝜋𝐿𝑖) 

⇒ 𝜆 = 𝜆𝑖 =
(𝑞𝑁 − 𝑞𝐼)𝐿𝑖 − 𝑒

(𝑞𝑁 − 𝑞𝐼)𝐿𝑖

.          (16) 

Equation (4) shows that 0 ≤ 𝜆𝑖 ≤ 1. Also,  
𝑈𝑖(𝐼) < 𝑈𝑖(𝑁) ⇒ 0 ≤ 𝜆𝑖 < 𝜆 ≤ 1,          (17) 

and 
𝑈𝑖(𝐼) > 𝑈𝑖(𝑁) ⇒ 0 ≤ 𝜆 < 𝜆𝑖 ≤ 1.          (18) 

This means that, if the attacks on User j are more 
frequent than 𝜆𝑖(and then User i is attacked less often), then 
User i prefers to play N. User i plays I otherwise. 

Similarly, User j plays a mixed strategy if and only if his 
payoff 𝑈𝑗(𝐼) when playing I is equal to his payoff 𝑈𝑗(𝑁) 
when playing N. This translates to: 

𝑈𝑗(𝐼) = 𝑈𝑗(𝑁) ⇒ 𝜆 = 𝜆𝑗 =
𝑒

(𝑞𝑁 − 𝑞𝐼)𝐿𝑗

.          (19) 

Equation (5) shows that 0 ≤ 𝜆𝑗 ≤ 1. Also, 
𝑈𝑗(𝐼) < 𝑈𝑗(𝑁) ⇒ 0 ≤ 𝜆 < 𝜆𝑗 ≤ 1,          (20) 

and 
𝑈𝑗(𝐼) > 𝑈𝑗(𝑁) ⇒ 0 ≤ 𝜆𝑗 < 𝜆 ≤ 1.          (21) 
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Further, the attacker plays a mixed strategy if and only if 
his payoff 𝑈𝑎(𝐴𝑖)  when attacking User i is equal to his 
payoff 𝑈𝑎(𝐴𝑗) when attacking User j. This translates to: 

𝑈𝑎(𝐴𝑖) = 𝑈𝑎(𝐴𝑗) ⇒ 𝛽(𝐿𝑗 + 𝜋𝐿𝑖) − 𝛼(𝐿𝑖 + 𝜋𝐿𝑗) 

= (
𝑞𝑁

𝑞𝑁 − 𝑞𝐼

) [(𝐿𝑗 + 𝜋𝐿𝑖) − (𝐿𝑖 + 𝜋𝐿𝑗)].   (22) 

Given the condition in (16), (19) and (22), we can 
distinguish three cases that we denote M1, M2 and M3 
depending on if 𝜆𝑗 = 𝜆𝑖 , 𝜆𝑗 < 𝜆𝑖 , or 𝜆𝑗 > 𝜆𝑖 . Furthermore, 
we will see that the total expense required to invest in 
security e determines which of the mixed strategy is used. 

Case M1: If 𝜆𝑗 = 𝜆𝑖 ⇒ 

𝑒 = 𝑒0 =
(𝑞𝑁 − 𝑞𝐼)𝐿𝑖𝐿𝑗

𝐿𝑖 + 𝐿𝑗

,          (23) 

then any strategy profile  {𝛼𝐼 + (1 − 𝛼)𝑁; 𝛽𝐼 +

(1 − 𝛽)𝑁; 𝜆𝑗𝐴𝑗 + (1 − 𝜆𝑗)𝐴𝑖} , with 𝛼  and 𝛽  set according 
to (22) is a mixed strategy Nash equilibrium. Recall that (15) 
must hold.  

We can see that when 𝜆𝑖 ≠ 𝜆𝑗, the conditions in (17)-(18) 
and (20)-(21) dictate that only one user plays a mixed 
strategy at a time while the other plays a pure strategy. 
Moreover, the attacker chooses the value of 𝜆  that 
corresponds to the user playing the mixed strategy. This 
consideration is critical to understand the next two cases. 

Case M2: If 𝜆𝑗 < 𝜆𝑖 ⇒ 

𝑒 < 𝑒0 =
(𝑞𝑁 − 𝑞𝐼)𝐿𝑖𝐿𝑗

𝐿𝑖 + 𝐿𝑗

,          (24) 

and 𝜆 = 𝜆𝑖, then according to (21), User j plays the pure 
strategy I. This means that  𝛽 = 1 . Setting 𝛽 = 1  in (22) 
yields  

𝛼 = 𝛼0 =
𝑞𝑁(𝐿𝑖 + 𝜋𝐿𝑗) − 𝑞𝐼(𝐿𝑗 + 𝜋𝐿𝑖)

(𝑞𝑁 − 𝑞𝐼)(𝐿𝑖 + 𝜋𝐿𝑗)
.          (25) 

We can verify that 0 < 𝛼0 < 1 when 𝜋 > 𝜋0 and (1), (2) 
and (3) hold. Therefore, the strategy profile  {𝛼0𝐼 +

(1 − 𝛼0)𝑁; 𝐼; 𝜆𝑖𝐴𝑗 + (1 − 𝜆𝑖)𝐴𝑖} is a mixed strategy Nash 
equilibrium. Observe that the low profile User i is more 
likely to invest in this mixed strategy Nash equilibrium 
compared to the pure strategy Nash equilibrium (𝑁, 𝐼, 𝐴𝑗). In 
this scenario, it is relatively cheap to invest in security as 
shown in (24).  

However, If 𝜆𝑗 < 𝜆𝑖  and 𝜆 = 𝜆𝑗 , then according to (18) 
User i plays the pure strategy I. This means that  𝛼 = 1 . 
Setting 𝛼 = 1 in (22) yields 

𝛽 =
𝑞𝑁(𝐿𝑗 + 𝜋𝐿𝑖) − 𝑞𝐼(𝐿𝑖 + 𝜋𝐿𝑗)

(𝑞𝑁 − 𝑞𝐼)(𝐿𝑖 + 𝜋𝐿𝑗)
> 1.          (26) 

The last Inequality in (26) holds when (1), (2), and (3) 
holds. This is a contradiction with (15).  

Case M3: If 𝜆𝑗 > 𝜆𝑖 ⇒ 
(𝑞𝑁 − 𝑞𝐼)𝐿𝑖𝐿𝑗

𝐿𝑖 + 𝐿𝑗

< 𝑒 < (𝑞𝑁 − 𝑞𝐼)𝐿𝑖 .          (27) 

Note that the last inequality must hold because of (4). Thus 
according to (17), when  𝜆 = 𝜆𝑗 , User i plays the pure 
strategy N. This means that  𝛼 = 0 . Setting 𝛼 = 0  in (22) 
yields: 

𝛽 = 𝛽0 =
𝑞𝑁[(𝐿𝑗 + 𝜋𝐿𝑖) − (𝐿𝑖 + 𝜋𝐿𝑗)]

(𝑞𝑁 − 𝑞𝐼)(𝐿𝑗 + 𝜋𝐿𝑖)
.          (28) 

We can verify that 0 < 𝛽0 < 1 when 𝜋 > 𝜋0 and (1), (2) 
and (3) hold. Therefore, the strategy profile  {𝑁; 𝛽0𝐼 +

(1 − 𝛽0)𝑁; 𝜆𝑗𝐴𝑗 + (1 − 𝜆𝑗)𝐴𝑖}  is a mixed strategy Nash 
equilibrium. Observe that the high profile User j is less likely 
to invest in this mixed strategy Nash equilibrium compared 
to the pure strategy Nash equilibrium  (𝑁, 𝐼, 𝐴𝑗) . In this 
scenario, it is relatively more expensive to invest in security 
as shown in (27).  

However, If 𝜆𝑗 > 𝜆𝑖  and 𝜆 = 𝜆𝑖, then according to (20), 
User j plays the pure strategy N. This means that 𝛽 = 0 . 
Setting 𝛽 = 0 in (22) yields: 

𝛼 = −
𝑞𝑁[(𝐿𝑗 + 𝜋𝐿𝑖) − (𝐿𝑖 + 𝜋𝐿𝑗)]

(𝑞𝑁 − 𝑞𝐼)(𝐿𝑖 + 𝜋𝐿𝑗)
< 0          (29) 

The last inequality in (29) holds when (1), (2), and (3) 
hold. This is a contradiction with (15).          ▄ 

In summary, we have shown that the low profile User i 
imposes two different types of negative externalities on the 
high profile User j in the cloud. If 𝐿𝑖 is low enough in such a 
way that (14) holds and 𝜋 ≤ 𝜋0 , then in the pure strategy 
profile (𝑁, 𝐼, 𝐴𝑗) shown in subcase (4a), the attacker targets 
the high profile user even though the high profile user (User 
j) invests in security while the low profile user (User i) does 
not invest. User j is the attacker’s only target. This is the first 
type of negative externality. When 𝐿𝑖 is high enough in such 
a way that (14) does not hold, then 𝜋 > 𝜋0and the attacker is 
forced to play a mixed strategy. The specific mixed strategy 
is determined by the total expense required to invest in 
security e. However, User i produces the second type of 
negative externality by investing less often than User j in all 
those mixed strategies. In fact, there is no Nash equilibrium 
in which the low profile user (User i) plays the pure strategy 
I. 

Furthermore, with low value of e (Case M2), it can be 
shown that User i’s probability to invest 𝛼0  (see (25)) 
increases with 𝐿𝑖 to the benefit of User j. Recall that in Case 
M2, User j always invests. However, if the value of e is high 
(Case M3), it is easy to verify that User j probability to 
invest in security 𝛽0 (see (28)) decreases with 𝐿𝑖. Recall that 
in Case M3, User i does not invest (play N). A high value of 
e causes an under investment problem in cloud security. 

 In short, it is important for a high profile user to be 
collocated with other high profile users in a public cloud. 
The notion of externality has always being perceived in the 
housing market. In fact, the value of other homes in the same 
neighborhood influences the price of any particular home. As 
a consequence, a rational home buyer will try to find out who 
are his neighbors before buying a home. A similar concept 
should apply to cloud computing. It can be important that a 
cloud user knows who his neighbors are. A cloud user’s 
neighborhood is the set of users with whom he shares the 
same resources (hypervisor, CPU cycle, DRAM of the 
physical machine, physical memory, and network buffers). 
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VI. NUMERICAL RESULTS 
Our game analysis has provided a detailed exposition of 

our game model and its equilibrium properties. The 
numerical results in this section are derived from our game 
analysis. The main variables used in calculating pure and 
mixed strategy equilibrium were 𝑅, 𝑞𝐼 , 𝑞𝑁 , 𝐿𝑖 , 𝐿𝑗 , 𝜋, and 𝑒 . 
We will use specific numbers to provide concrete examples 
and examine the three cases in which we will increase 
𝑒, 𝐿𝑗 , and 𝜋 individually while ceteris paribus.  

A. Changes in User j’s Payoff with Probability π 
In this first scenario, we will take the value of 𝜋 to be 

variable while setting values for all the other parameters. We 
will take 𝑞𝑁 = 0.5, 𝑞𝐼 = 0.1, 𝑅 = 1.2, 𝐿𝑖 = 1, 𝐿𝑗 = 10 . 
Those values are chosen to illustrate some of the non-
intuitive implications of our game model. Using (11), we can 
see that 𝜋0 = 0.102. Furthermore, with (23) we can see that 
𝑒0 = 0.3636 . Moreover, (27) gives us 0.3636 < 𝑒 < 0.4 .  
Recall that in case of a mixed strategy Nash equilibrium 
(𝜋 > 𝜋0 = 0.102), the value of e determines which of the 
mixed strategy Nash equilibrium (Case M1, M2 or M3) is 
selected by the players. In Fig. 2, we set 𝑒 = 0.3 (𝑒 < 𝑒0) so 
that once the critical value of 𝜋  is reached, the mixed 
strategy Nash equilibrium will be as Case M2. 

We immediately see that the payoff for User j in pure 
Nash equilibrium is negative. When the payoff of a rational 
user is negative, he prefers not to use the cloud. So, for all 
values of 𝜋 ≤ 0.102  the User j, which is assumed to be 
rational in our model, will not use the cloud because the risk 
of a security breach and negative externalities of using the 
cloud are greater than the multiple benefits that cloud 
computing provides. Recall that in the pure strategy Nash 
equilibrium, User j is at a disadvantage because he is the 
attacker’s only target.  

However, at 𝜋 = 0.102 there is a strategy change from 
pure to mixed due to (11), and as at this point the strategies 
shift. With a shift in Nash equilibrium and players’ 
strategies, there is a concurring change in the function used 
as it is a new set of equations governing the strategies. This 
allows for a positive payoff for 0.102 < 𝜋 ≤ 0.47837 and 
implies that User j will participate in the cloud for the 
aforementioned values of π. These results are seemingly 
counterintuitive since the hypervisor has a higher probability 
of being compromised when User j participates in cloud 
activities than when he does not. This is explained by the 
equilibrium shift to a mixed strategy where the attacker is not 
only attacking User j but also User i. This lowers User j’s 
potential loss and thus shifts his payoff upwards. 

Examining Fig. 2 again, the payoff becomes negative 
again as 𝜋  crosses 0.47837, which shows that User j will 
again not participate in the cloud for all values of 0.47837 <
𝜋 ≤ 1 since the probability of being compromised from an 
indirect attack is now too high to justify cloud usage. 

By setting 𝑒 = 0.38 and upholding (27), Fig. 3 shows the 
strategy shift from pure Nash equilibrium to the mixed Nash 
equilibrium in Case M3. Still, for values of 𝜋 ≤  0.102, User 
j will not participate in the cloud because of his negative 
payoff. Although once 𝜋 crosses 0.102, a change in payoff 

from negative to positive, as in Fig. 2, makes the cloud a 
viable option. Interestingly, the payoff does not cross over 
again to become negative after this original movement of 
equilibriums. This means that for all values of 0.102 < 𝜋 ≤
1, User j will participate in the cloud if 0.3636 < 𝑒 < 0.4. 
Another surprising result is that User j’s payoff is higher in 
Fig. 3 compared to Fig. 2 although the required expense in 
security e in Fig. 3 is higher. Fig. 4 and 5 show more details 
in the change of User j’s payoff with e.    

 
Figure 2: Changes in User j’s payoff with probability 𝜋 with 𝑒 < 𝑒0. 

 
Figure 3: Changes in User j’s payoff with probability 𝜋 with 𝑒 > 𝑒0. 

B. Changes of User j’s Payoff with the Expense in Security 
e 
We have already examined the case of pure Nash 

equilibrium and 2 cases of mixed strategy equilibrium 
dependent on the varying values of 𝜋. We will now make 𝜋 a 
constant while varying the levels of e. As stated before, the 
value of 𝜋0 = 0.102 is a focal point between mixed and pure 
strategy equilibrium. In this case of 𝜋 ≤ 0.102, User j has 
only one (pure) strategy, whose payoff of 𝑅 − 𝑒 − 𝑞𝐼𝐿𝑗  
yields the linear function in Fig. 4. 

The “x” intercept where the payoff is 0 (at 𝑒 = 0.2) is yet 
another turning point where User j will no longer use the 
cloud. For values 0 ≤ 𝑒 ≤ 0.2, User j will participate in the 
cloud because of the low overhead of investing in security. 
However, for 𝑒 > 0.2, the cost is too great to allow for a 
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positive payoff and User j will not use the cloud. For .102<
𝜋 ≤ 1  the players’ strategies are switched and the entire 
payoff map changes as seen in Fig. 5. 

In Fig. 5, we have set 𝜋 = 0.11 > 𝜋0  and thus we can 
see the three different cases of mixed strategy: Case M2 (𝑒 <
0.3636), Case M1 (𝑒 = 0.3636) and Case M3 (3636 < 𝑒 <
.4). The major shift from Case M2 to Case M3 occurs at the 
threshold of 𝑒 = 0.3636 (Case M1) due to (23) stated in the 
previous analysis. For 0 ≤ 𝑒 < 0.3636 , the change from 
using to not using the cloud occurs at 𝑒 = 0.08606 when the 
payoff becomes negative. 

 
Figure 4: Changes of User j’s payoff with the expense in security e with 

𝜋 < 𝜋0. 

 
Figure 5: Changes of User j’s payoff with the expense in security e with 

𝜋 > 𝜋0. 

When the expense e increases and 0.3636 < 𝑒 < 0.4, the 
shift in mixed Nash equilibrium from Case M2 to Case M3 
causes the payoff to change and become positive. Thus it 
becomes possible for User j to profitably use cloud services. 
This is a counter intuitive result from this analysis. One may 
expect an increase of the expense e to never benefit User j. 
However, in this game theoretic setting, User j’s payoff 
depends not only of his own action but also on the action of 
User i and the attacker. The increase of the expense e 
changes User i’s and the attacker’s strategy is in such a way 

that it has an overall positive effect on User j’s payoff. In 
Case M3, User j invests with probability 𝛽0 as opposed to 1 
in Case M2. This yields some savings that increases User j’s 
overall payoff. Recall that moving from Case M2 to M3 
changes the mixed strategy Nash equilibrium from {𝛼0𝐼 +

(1 − 𝛼0)𝑁; 𝐼; 𝜆𝑖𝐴𝑗 + (1 − 𝜆𝑖)𝐴𝑖}  to {𝑁; 𝛽0𝐼 + (1 −

𝛽0)𝑁; 𝜆𝑗𝐴𝑗 + (1 − 𝜆𝑗)𝐴𝑖}. Note also that for 𝑒 ≥ 0.4, Case 
M3 no longer applies as consistent with (4). 

C. Changes in User j’s payoff with his loss from security 
breach 𝐿𝑗 
Now that the variability of π and e - and their resulting 

equilibrium shifts they cause - have been examined, we will 
examine Fig. 6 at the phenomena in equilibrium changes 
associated with varying values of 𝐿𝑗. Since 𝐿𝑗 is a variable in 
both the equations that govern the values of 𝜋0  (Equation 
(11)) and 𝑒0 (Equation (23)), we must set specific values for 
π and e in order to avoid a problem of double variables.  For 
the rest of the analysis of 𝐿𝑗 , we will set 𝜋 = 0.1 and 𝑒 =
0.3. Recall that we have set 𝐿𝑖 = 1. Therefore, 𝐿𝑗 is a direct 
indication of how much time 𝐿𝑗 is bigger than 𝐿𝑖.  

Unlike the previous two problems in which a certain 
change in the discrete value of 𝜋  with a varying e could 
cause an equilibrium shift, there is no such change here. Here 
the values of 𝜋  and e are constant and 𝐿𝑗  is the unique 
variable.  As can be seen in Fig. 6, any value of 𝐿𝑗 ≥ 9.8 will 
result in a pure Nash equilibrium due to (11). Further, (23) 
shows that when 3 < 𝐿𝑗 < 9.8  the mixed strategy Nash 
equilibrium profile of Case M2 will hold, Case M1 holds 
for 𝐿𝑗 = 3, and if 1 < 𝐿𝑗 < 3, then Case M3 will be used.  

 
Figure 6: Changes in User j’s payoff with his loss from security breach 𝐿𝑗. 

These results show that Case M3 is the “best” of all the 
equilibriums because User j’s potential loss 𝐿𝑗 is so close to 
User i’s loss 𝐿𝑖. An obvious result is that User j’s payoff is 
maximized in Case M3 when 𝐿𝑗 is close to 𝐿𝑖 = 1. That is 
because there is no imbalance between 𝐿𝑖 and 𝐿𝑗 and thus the 
negative externalities are minimized. The negative 
externality in a public cloud security can be mitigated by 
putting VMs that have similar potential loss from a security 
breach in the same physical machine.  However, a surprising 
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result is that User j’ s payoff jumps up concurrent with 
switching from the mixed Nash equilibrium (Case M2) to the 
pure Nash equilibrium despite the fact that 𝐿𝑗   becomes 
substantially greater than 𝐿𝑖 . For instance, User j’s payoff 
when 𝐿𝑗 = 4𝐿𝑖 equals User j’s payoff when 𝐿𝑗 = 10𝐿𝑖. This 
prediction is not possible without a thorough game theoretic 
analysis. 

D. Changes in User j’s payoff with his reward from using 
the cloud 
For the constant R, changing it will have a trivial effect 

on any of the given graphs shown. As seen in Fig. 7, a 
change in the value of R will cause the graph to translate 
upward or downward depending on the new value of R 
selected. For this particular instance, if the reward for using 
the cloud is increased from 1.2 to 4.4, the entire payoff 
scheme from 1 ≤ 𝐿𝑗 ≤ 14 becomes positive since the 
increased level of reward increases the payoff. 

 
Figure 7: Changes in User j’s payoff with his reward from using the cloud. 

VII. MODEL EXTENSION AND DISCUSSION 
The model we have presented so far has considered two 

users and one attacker. However, our model can be extended 
to more than two users and multiple attackers. 

A. Model Extension to more than two Users and a Single 
Attacker 
All the assumption made in our game model in Section 

IV remains valid except that we increase the number of users 
from 2 to n. The n users are denoted User 1, User 2, …, User 
n-1, User n. Their potential loss from a security breach is 𝐿1, 
𝐿2 , …,𝐿𝑛−1 , 𝐿𝑛  respectively. We consider that 𝐿1 ≤ 𝐿2 ≤
⋯ ≤ 𝐿𝑛−1 ≤ 𝐿𝑛. The attacker targets one of the n users. A 
similar analysis as above shows that the game admits a pure 
strategy Nash equilibrium if 𝐿𝑛 is substantially greater than 
𝐿𝑛−1. In this Nash equilibrium, User n is the attacker’s only 
target. The attacker plays the strategy 𝐴𝑛 , User n invests 
(plays I) while all the other users do not invest (play N). 
Regarding the threshold value of 𝜋 below for which we have 
a pure strategy Nash equilibrium, (11) translates to 

𝜋0
∗ =

𝑞𝐼𝐿𝑛 − 𝑞𝑁𝐿𝑛−1

𝑞𝑁𝐿𝑛 − 𝑞𝐼𝐿𝑛−1

.          (30) 

As before, the game admits a multitude of mixed 
strategies if 𝜋 > 𝜋0

∗ . The expense e will determine the 
specific mixed strategy the players choose. 

B. Model Extension to more than two Users and Multiple 
Attacker 
In a game with multiple independent attackers, each 

attacker maximizes his own payoff. If  𝜋 < 𝜋0
∗, each attacker 

plays the strategy 𝐴𝑛 and User n invests (plays I) while all 
the other users do not invest (play N). However, the game 
complexity increases if the attackers collude by coordinating 
their action and sharing the payoff. Nevertheless, an increase 
in the number of attackers increases the likelihood that a 
given user can be targeted by one attacker and eventually get 
compromised. As the number of attackers increases, the 
cloud environment becomes more hostile and more users 
will be forced to invest (because of (4) and (5)). 

Another consideration is the users’ payoff structure. 
There are applications in which a user incurs the same loss 
after being compromised by a single attacker or multiple 
attackers e.g., information integrity can be lost when either a 
few bits or when many bits of a data item become useless. 
Either critical data are well protected or they are not. 
However, the severity of other types of attacks such as a 
Distributed Denial of Service (DDoS) increases with the 
number of attackers involved. 

VIII. CONCLUSION 
The lack of an accurate evaluation of the negative 

externalities stemming from a high profile organization using 
the cloud could result in the refusal of such organizations 
from joining a public cloud in spite of the many advantages 
that cloud computing offers. The negative externalities of 
using a public cloud come from the fact that the users are not 
perfectly isolated from one another. They share common 
resources such as the hypervisor, the last-level cache (LLC), 
memory bandwidth, and IO buffers that cause 
interdependency. 

This research has used game theory to provide a 
quantitative approach to perform a cost benefit analysis of 
cloud services while taking into account the action of other 
cloud users and their different potential losses from a 
security breach. Our model takes into account the potential 
collateral damage from an indirect attack and cross side 
channel attack. The game has multiple possible Nash 
equilibria that can be in pure or mixed strategy. Our research 
finds that an increase in the probability that the hypervisor is 
compromised, given a successful attack on a user’s VM, may 
force the small cloud participant to protect their VM and thus 
increases the overall cloud security to yield better outcome to 
high profile users. 

This research has also shown that there is an intricate 
relationhip between the total expenses required to invest in 
security and a high profile user’s payoff. A change in 
security expense changes the game Nash equilibria that the 
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players adopt with some of those equilibria being more 
desirable to high profile users.  

Definitely, the negative externality in a public cloud 
security can be mitigated by putting VMs that have similar 
potential loss from a security breach in the same physical 
machine. 

According to Ross Anderson, information security is 
hard because defenders have to defend everywhere and 
attackers could attack anywhere [16]. This leads to many 
problems for: network defenders, users, for software used in 
critical infrastructure, a small business, or a division in the 
United States government. Moreover, these security 
problems are exacerbated when using cloud computing. By 
utilizing game theory, we can more accurately describe the 
nature of the attacker and his motives. However, sometimes 
our best friend can be our worst enemy. Other players’ 
behaviors can be seemingly erratic and even counterintuitive, 
which can be very dangerous when your decisions are based 
on the decisions of others. With game theory, we can quell 
some of this contradictory behavior that is characteristic of 
network security and bring clarity to this complex topic. 
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